Fitting dose resonse models

drm()

Fitting dose-response models

Methods

anova(<drc>)

ANOVA for dose-response model fits

boxcox(<drc>)

Transform-both-sides Box-Cox transformation

bread.drc() estfun.drc()

Bread and meat for the sandwich

coef(<drc>)

Extract Model Coefficients

confint(<drc>)

Confidence Intervals for model parameters

cooks.distance(<drc>) hatvalues(<drc>)

Model diagnostics for nonlinear dose-response models

ED(<drc>)

Estimating effective doses

fitted(<drc>)

Extract fitted values from model

plot(<drc>)

Plotting fitted dose-response curves

predict(<drc>)

Prediction

print(<drc>)

Printing key features

print(<summary.drc>)

Printing summary of non-linear model fits

residuals(<drc>)

Extracting residuals from the fitted dose-response model

summary(<drc>)

Summarising non-linear model fits

vcov(<drc>)

Calculating variance-covariance matrix for objects of class 'drc'

Misc

backfit()

Calculation of backfit values from a fitted dose-response model

CIcomp() CIcompX() plotFACI()

Calculation of combination index for binary mixtures

comped()

Comparison of effective dose values

compParm()

Comparison of parameters

drmc()

Sets control arguments

ED(<drc>)

Estimating effective doses

EDcomp() relpot()

Comparison of relative potencies between dose-response curves

getInitial()

Showing starting values used

getMeanFunctions()

Display available dose-response models

isobole()

Creating isobolograms

lin.test()

Lack-of-fit test for the mean structure based on cumulated residuals

maED()

Estimation of ED values using model-averaging

MAX()

Maximum mean response

mixture()

Fitting binary mixture models

modelFit()

Assessing the model fit

mr.test()

Mizon-Richard test for dose-response models

mselect()

Dose-response model selection

neill.test()

Neill's lack-of-fit test for dose-response models

noEffect()

Testing if there is a dose effect at all

PR()

Expected or predicted response

rdrm()

Simulating a dose-response curve

searchdrc()

Searching through a range of initial parameter values to obtain convergence

simDR()

Simulating ED values under various scenarios

Dose-response functions

AR.2() AR.3()

Asymptotic regression model

baro5()

The modified baro5 function

BC.5() BC.4()

The Brain-Cousens hormesis models

braincousens()

The Brain-Cousens hormesis models

cedergreen() CRS.6() ucedergreen()

The Cedergreen-Ritz-Streibig model

CRS.4a() UCRS.4a()

The Cedergreen-Ritz-Streibig model

CRS.5a() UCRS.5a()

Cedergreen-Ritz-Streibig dose-reponse model for describing hormesis

EXD.2() EXD.3()

Exponential decay model

fplogistic() FPL.4()

Fractional polynomial-logistic dose-response models

gompertz()

Mean function for the Gompertz dose-response or growth curve

gammadr()

Gamma dose-response model

gaussian() lgaussian()

Normal and log-normal biphasic dose-response models

ursa()

Model function for the universal response surface approach (URSA) for the quantitative assessment of drug interaction

gompertzd()

The derivative of the Gompertz function

logistic() L.3() L.4() L.5()

The logistic model

LL.2() l2() LL2.2()

The two-parameter log-logistic function

LL.3() LL.3u() l3() l3u() LL2.3() LL2.3u()

The three-parameter log-logistic function

LL.4() l4() LL2.4()

The four-parameter log-logistic function

LL.5() l5() LL2.5()

The five-parameter log-logistic function

llogistic() llogistic2()

The log-logistic function

lnormal() LN.2() LN.3() LN.3u() LN.4()

Log-normal dose-response model

MM.2() MM.3()

Michaelis-Menten model

multi2()

Multistage dose-response model with quadratic terms

NEC() NEC.2() NEC.3() NEC.4()

Dose-response model for estimation of no effect concentration (NEC).

twophase()

Two-phase dose-response model

W1.2() W2.2()

The two-parameter Weibull functions

W1.3() W2.3() W2x.3() W1.3u() W2.3u()

The three-parameter Weibull functions

W1.4() W2.4()

The four-parameter Weibull functions

weibull1() weibull2() weibull2x()

Weibull model functions