CRS.4a.Rd
'CRS.4a', 'CRS.4b' and 'CRS.4c' provide the Cedergreen-Ritz-Streibig modified log-logistic model for describing hormesis with the lower limit equal to 0.
'UCRS.4a', 'UCRS.4b' and 'UCRS.4c' provide the Cedergreen-Ritz-Streibig modified log-logistic model for describing u-shaped hormesis with the lower limit equal to 0.
CRS.4a(names = c("b", "d", "e", "f"), ...) UCRS.4a(names = c("b", "d", "e", "f"), ...)
names | a vector of character strings giving the names of the parameters. The default is reasonable (see above). |
---|---|
... | additional arguments to be passed from the convenience functions. |
The model is given by the expression $$ f(x) = 0 + \frac{d-0+f \exp(-1/x)}{1+\exp(b(\log(x)-\log(e)))}$$ which is a five-parameter model.
It is a modification of the four-parameter logistic curve to take hormesis into account.
The u-shaped model is given by the expression $$ f(x) = 0 + d - \frac{d-0+f \exp(-1/x^{\alpha})}{1+\exp(b(\log(x)-\log(e)))}$$
The a,b,c models are obtained by setting alpha equal to 1, 0.5 and 0.25, respectively.
See cedergreen
.
See the reference under cedergreen
.
This function is for use with the function drm
.
## Fitting modified logistic models lettuce.crsm1 <- drm(lettuce[,c(2,1)], fct=CRS.4a()) summary(lettuce.crsm1)#> #> Model fitted: Cedergreen-Ritz-Streibig with lower limit 0 (alpha=1) (4 parms) #> #> Parameter estimates: #> #> Estimate Std. Error t-value p-value #> b:(Intercept) 0.774519 0.248592 3.1156 0.01096 * #> d:(Intercept) 1.108705 0.078481 14.1270 6.212e-08 *** #> e:(Intercept) 27.620019 30.307666 0.9113 0.38357 #> f:(Intercept) 0.013090 0.417215 0.0314 0.97559 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Residual standard error: #> #> 0.1556406 (10 degrees of freedom)#> #> Estimated effective doses #> #> Estimate Std. Error #> e:1:50 28.436 11.618## Need to explicitly specify that the upper limit ## is the reference in order to get ED10 and ED90 right ED(lettuce.crsm1, c(10, 50, 90), reference = "upper")#> #> Estimated effective doses #> #> Estimate Std. Error #> e:1:10 1.7599 2.3788 #> e:1:50 28.4357 11.6181 #> e:1:90 479.2496 386.2069#> #> Model fitted: Cedergreen-Ritz-Streibig with lower limit 0 (alpha=.5) (4 parms) #> #> Parameter estimates: #> #> Estimate Std. Error t-value p-value #> b:(Intercept) 0.574252 0.074482 7.7099 1.625e-05 *** #> d:(Intercept) 1.012219 0.094866 10.6700 8.746e-07 *** #> e:(Intercept) 0.837301 1.961165 0.4269 0.6785 #> f:(Intercept) 3.835591 5.005943 0.7662 0.4613 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Residual standard error: #> #> 0.1349385 (10 degrees of freedom)#> #> Estimated effective doses #> #> Estimate Std. Error #> e:1:50 26.2751 8.7107#> #> Model fitted: Cedergreen-Ritz-Streibig with lower limit 0 (alpha=.25) (4 parms) #> #> Parameter estimates: #> #> Estimate Std. Error t-value p-value #> b:(Intercept) 0.493082 0.136746 3.6058 0.004801 ** #> d:(Intercept) 0.974199 0.086921 11.2078 5.538e-07 *** #> e:(Intercept) 1.454518 3.902350 0.3727 0.717129 #> f:(Intercept) 2.866269 3.438795 0.8335 0.424019 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Residual standard error: #> #> 0.1235996 (10 degrees of freedom)#> #> Estimated effective doses #> #> Estimate Std. Error #> e:1:50 36.836 15.265