predict.drc.Rd
Predicted values for models of class 'drc'.
# S3 method for drc predict(object, newdata, se.fit = FALSE, interval = c("none", "confidence", "prediction", "ssd"), level = 0.95, na.action = na.pass, od = FALSE, vcov. = vcov, ssdSEfct = NULL, constrain = TRUE, checkND = TRUE, ...)
object | an object of class 'drc'. |
---|---|
newdata | An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used. |
se.fit | logical. If TRUE standard errors are required. |
interval | character string. Type of interval calculation: "none", "confidence", "prediction", or "ssd". |
level | Tolerance/confidence level. |
na.action | function determining what should be done with missing values in 'newdata'. The default is to predict 'NA'. |
od | logical. If TRUE adjustment for over-dispersion is used. |
vcov. | function providing the variance-covariance matrix. |
ssdSEfct | specifies the function for interpolating standard errors between observed standard errors. The default is linear interpolation on log-log scale (back-transformed). See Details for more explanation. |
constrain | logical. If TRUE (default) predicted values are truncated within meaningful limits, i.e., 0 and, possibly, 1. |
checkND | logical indicating whether or not names in "newdata" data frame match the names in the original data frame (used for fitting the model). Default is TRUE. |
… | further arguments passed to or from other methods. |
For the built-in log-logistic, log-normal, and Weibull-type models standard errors and confidence/prediction intervals can be calculated. For other built-in models it may not yet be implemented (drop us an e-mail if you need them).
The function for interpolating standard errors of estimates, which may be used when fitting an SSD, should have 3 arguments: observed estimates and corresponding standard errors and future estimates and should return interpolated standard errors corresponding to the future estimates provided.
A matrix with as many rows as there are dose values provided in 'newdata' or in the original dataset (in case 'newdata' is not specified) and, at most, 4 columns containing fitted, standard errors, lower and upper limits of confidence/prediction intervals.
For details are found in the help page for predict.lm
.
## Fitting a model spinach.model1 <- drm(SLOPE~DOSE, CURVE, data = spinach, fct = LL.4()) ## Predicting values a dose=2 (with standard errors) predict(spinach.model1, data.frame(dose=2, CURVE=c("1", "2", "3")), se.fit = TRUE)#> Prediction SE #> [1,] 0.9048476 0.02496135 #> [2,] 0.4208307 0.02924987 #> [3,] 0.5581673 0.03067170## Getting confidence intervals predict(spinach.model1, data.frame(dose=2, CURVE=c("1", "2", "3")), interval = "confidence")#> Prediction Lower Upper #> [1,] 0.9048476 0.8552178 0.9544775 #> [2,] 0.4208307 0.3626741 0.4789873 #> [3,] 0.5581673 0.4971838 0.6191509## Getting prediction intervals predict(spinach.model1, data.frame(dose=2, CURVE=c("1", "2", "3")), interval = "prediction")#> Prediction Lower Upper #> [1,] 0.9048476 0.7504590 1.0592363 #> [2,] 0.4208307 0.2634937 0.5781677 #> [3,] 0.5581673 0.3997636 0.7165710