'LL.4' and 'LL2.4' provide the four-parameter log-logistic function, self starter function, names of the parameters and, optionally, first and second derivatives for a faster estimation.

LL.4(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"), ...)

  l4(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"), ...)

  LL2.4(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"), ...)

Arguments

fixed

numeric vector. Specifies which parameters are fixed and at what value they are fixed. NAs for parameter that are not fixed.

names

a vector of character strings giving the names of the parameters. The default is reasonable.

...

Additional arguments (see llogistic).

Details

The four-parameter log-logistic function is given by the expression $$ f(x) = c + \frac{d-c}{1+\exp(b(\log(x)-\log(e)))}$$

or in another parameterisation (converting the term \(\log(e)\) into a parameter) $$ f(x) = c + \frac{d-c}{1+\exp(b(\log(x)-\tilde{e}))}$$

The function is symmetric about the inflection point (\(e\)).

Value

See llogistic.

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley \& Sons (p. 330).

Note

This function is for use with the function drm.

See also

Setting \(c=0\) yields LL.3. See also LL.5.

Examples

spinach.m1 <- drm(SLOPE~DOSE, CURVE, data = spinach, fct = LL.4()) spinach.m1
#> #> A 'drc' model. #> #> Call: #> drm(formula = SLOPE ~ DOSE, curveid = CURVE, data = spinach, fct = LL.4()) #> #> Coefficients: #> b:1 b:2 b:3 b:4 b:5 c:1 c:2 #> 0.519519 0.800796 0.681913 1.844809 1.650758 -0.016595 0.132589 #> c:3 c:4 c:5 d:1 d:2 d:3 d:4 #> 0.146406 0.079552 -0.009066 1.879553 0.946000 1.090321 2.153578 #> d:5 e:1 e:2 e:3 e:4 e:5 #> 1.806283 1.794955 0.945530 1.373023 0.197326 0.210793 #>