LL.3.Rd
'LL.3' and 'LL2.3' provide the three-parameter log-logistic function where the lower limit is equal to 0.
'LL.3u' and 'LL2.3u' provide three-parameter logistic function where the upper limit is equal to 1, mainly for use with binomial/quantal response.
LL.3(fixed = c(NA, NA, NA), names = c("b", "d", "e"), ...) LL.3u(upper = 1, fixed = c(NA, NA, NA), names = c("b", "c", "e"), ...) l3(fixed = c(NA, NA, NA), names = c("b", "d", "e"), ...) l3u(upper = 1, fixed = c(NA, NA, NA), names = c("b", "c", "e"), ...) LL2.3(fixed = c(NA, NA, NA), names = c("b", "d", "e"), ...) LL2.3u(upper = 1, fixed = c(NA, NA, NA), names = c("b", "c", "e"), ...)
upper | numeric value. The fixed, upper limit in the model. Default is 1. |
---|---|
fixed | numeric vector. Specifies which parameters are fixed and at what value they are fixed. NAs for parameter that are not fixed. |
names | a vector of character strings giving the names of the parameters. The default is reasonable. |
... | Additional arguments (see |
The three-parameter log-logistic function with lower limit 0 is $$ f(x) = 0 + \frac{d-0}{1+\exp(b(\log(x)-\log(e)))}$$
or in another parameterisation $$ f(x) = 0 + \frac{d-0}{1+\exp(b(\log(x)-e))}$$
The three-parameter log-logistic function with upper limit 1 is $$ f(x) = c + \frac{1-c}{1+\exp(b(\log(x)-\log(e)))}$$
or in another parameterisation $$ f(x) = c + \frac{1-c}{1+\exp(b(\log(x)-e))}$$
Both functions are symmetric about the inflection point (\(e\)).
See llogistic
.
Finney, D. J. (1971) Probit Analysis, Cambridge: Cambridge University Press.
This function is for use with the function drm
.
## Fitting model with lower limit equal 0 ryegrass.model1 <- drm(rootl ~ conc, data = ryegrass, fct = LL.3()) summary(ryegrass.model1)#> #> Model fitted: Log-logistic (ED50 as parameter) with lower limit at 0 (3 parms) #> #> Parameter estimates: #> #> Estimate Std. Error t-value p-value #> b:(Intercept) 2.47033 0.34168 7.2299 4.011e-07 *** #> d:(Intercept) 7.85543 0.20438 38.4352 < 2.2e-16 *** #> e:(Intercept) 3.26336 0.19641 16.6154 1.474e-13 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Residual standard error: #> #> 0.5615802 (21 degrees of freedom)## Fitting binomial response ## with non-zero control response ## Example dataset from Finney (1971) - example 19 logdose <- c(2.17, 2,1.68,1.08,-Inf,1.79,1.66,1.49,1.17,0.57) n <- c(142,127,128,126,129,125,117,127,51,132) r <- c(142,126,115,58,21,125,115,114,40,37) treatment <- factor(c("w213","w213","w213","w213", "w214","w214","w214","w214","w214","w214")) # Note that the control is included in one of the two treatment groups finney.ex19 <- data.frame(logdose, n, r, treatment) ## Fitting model where the lower limit is estimated fe19.model1 <- drm(r/n~logdose, treatment, weights = n, data = finney.ex19, logDose = 10, fct = LL.3u(), type="binomial", pmodels = data.frame(treatment, 1, treatment))#> Warning: NaNs producedsummary(fe19.model1)#> #> Model fitted: Log-logistic (ED50 as parameter) with upper limit at 1 (3 parms) #> #> Parameter estimates: #> #> Estimate Std. Error t-value p-value #> b:w213 -2.183042 0.232540 -9.3878 < 2.2e-16 *** #> b:w214 -2.117258 0.257816 -8.2123 < 2.2e-16 *** #> c:(Intercept) 0.171725 0.033821 5.0775 3.824e-07 *** #> e:w213 16.599749 1.754358 9.4620 < 2.2e-16 *** #> e:w214 9.553766 1.412122 6.7655 1.328e-11 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1modelFit(fe19.model1)#> Goodness-of-fit test #> #> Df Chisq value p value #> #> DRC model 5 8.9976 0.1092plot(fe19.model1, ylim = c(0, 1.1), bp = -1, broken = TRUE, legendPos = c(0, 1))abline(h = 1, lty = 2)