vcov.drc.Rd
'vcov' returns the estimated variance-covariance matrix for the parameters in the non-linear function.
# S3 method for drc vcov(object, ..., corr = FALSE, od = FALSE, pool = TRUE, unscaled = FALSE)
object | an object of class 'drc'. |
---|---|
... | additional arguments. |
corr | logical. If TRUE a correlation matrix is returned. |
od | logical. If TRUE adjustment for over-dispersion is used. This argument only makes a difference for binomial data. |
pool | logical. If TRUE curves are pooled. Otherwise they are not. This argument only works for models with
independently fitted curves as specified in |
unscaled | logical. If TRUE the unscaled variance-covariance is returned. This argument only makes a difference for continuous data. |
A matrix of estimated variances and covariances.
## Fitting a four-parameter log-logistic model ryegrass.m1 <- drm(rootl ~ conc, data = ryegrass, fct = LL.4()) vcov(ryegrass.m1)#> [,1] [,2] [,3] [,4] #> [1,] 0.216282967 0.04601511 -0.03504683 -0.003763692 #> [2,] 0.046015113 0.04502563 -0.00471192 -0.016918440 #> [3,] -0.035046835 -0.00471192 0.03555759 -0.012868772 #> [4,] -0.003763692 -0.01691844 -0.01286877 0.034496126vcov(ryegrass.m1, corr = TRUE)#> [,1] [,2] [,3] [,4] #> [1,] 1.00000000 0.4662936 -0.3996423 -0.04357304 #> [2,] 0.46629357 1.0000000 -0.1177611 -0.42928455 #> [3,] -0.39964231 -0.1177611 1.0000000 -0.36743943 #> [4,] -0.04357304 -0.4292845 -0.3674394 1.00000000