rdrm.Rd
Simulation of a dose-response curve with user-specified dose values and error distribution.
rdrm(nosim, fct, mpar, xerror, xpar = 1, yerror = "rnorm", ypar = c(0, 1), onlyY = FALSE)
nosim | numeric. The number of simulated curves to be returned. |
---|---|
fct | list. Any built-in function in the package drc or a list with similar components. |
mpar | numeric. The model parameters to be supplied to |
xerror | numeric or character. The distribution for the dose values. |
xpar | numeric vector supplying the parameter values defining the distribution for the dose values.
If |
yerror | numeric or character. The error distribution for the response values. |
ypar | numeric vector supplying the parameter values defining the error distribution for the response values. |
onlyY | logical. If TRUE then only the response values are returned (useful in simulations). Otherwise both dose values and response values (and for binomial data also the weights) are returned. |
The distribution for the dose values can either be a fixed set of dose values (a numeric vector) used repeatedly for creating all curves or be a distribution specified as a character string resulting in varying dose values from curve to curve.
The error distribution for the response values can be any continuous distribution
like rnorm
or rgamma
. Alternatively it can be the binomial distribution
rbinom
.
A list with up to 3 components (depending on the value of the onlyY
argument).
~put references to the literature/web site here ~
## Simulating normally distributed dose-response data ## Model fit to simulate from ryegrass.m1 <- drm(rootl~conc, data = ryegrass, fct = LL.4()) ## 10 random dose-response curves based on the model fit sim10a <- rdrm(10, LL.4(), coef(ryegrass.m1), xerror = ryegrass$conc) sim10a#> $x #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] #> [1,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [2,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [3,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [4,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [5,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [6,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [7,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [8,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [9,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [10,] 0 0 0 0 0 0 0.94 0.94 0.94 1.88 1.88 1.88 3.75 #> [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] #> [1,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [2,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [3,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [4,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [5,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [6,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [7,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [8,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [9,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> [10,] 3.75 3.75 7.5 7.5 7.5 15 15 15 30 30 30 #> #> $y #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 6.504645 6.326134 5.334205 7.721202 9.280034 8.953097 8.703807 7.333097 #> [2,] 6.420938 9.161273 6.536564 7.337932 8.386111 7.967100 6.042894 8.796776 #> [3,] 7.414667 7.698021 7.028222 9.195544 6.626636 7.150189 7.447056 7.527533 #> [4,] 7.017743 7.495155 7.560129 9.241746 8.414481 7.207792 6.760996 6.809115 #> [5,] 9.183904 7.089027 7.374186 6.748351 6.399402 7.604708 7.790634 6.241715 #> [6,] 6.134385 7.303266 7.847950 8.040487 9.282043 8.071802 7.753336 5.879548 #> [7,] 8.490428 7.052179 7.388594 7.561643 8.870711 6.718094 7.597215 7.018335 #> [8,] 5.947482 7.518250 7.690510 7.762480 7.360530 7.197111 7.051964 7.325444 #> [9,] 7.275794 7.330922 8.238051 8.001791 7.889586 8.739220 6.651174 7.463123 #> [10,] 8.675090 7.771790 8.066295 9.090500 6.165093 5.745235 9.189518 6.900071 #> [,9] [,10] [,11] [,12] [,13] [,14] [,15] #> [1,] 6.570567 5.612329 8.439093 5.725059 4.6255186 4.136818 2.847341 #> [2,] 8.912928 5.837975 5.809030 5.885423 1.2847168 2.656616 4.135515 #> [3,] 6.975992 6.776143 5.970530 7.495005 1.3256084 2.932646 5.392964 #> [4,] 6.955902 6.197190 6.544389 4.809748 4.5259949 3.442191 2.201608 #> [5,] 7.766050 6.081771 6.320336 6.096133 0.8870236 2.843685 3.247255 #> [6,] 7.702998 6.966522 7.664001 6.077113 3.7001785 3.243735 2.575318 #> [7,] 8.607236 7.167234 6.508569 5.501808 3.3235976 3.972992 2.751160 #> [8,] 10.278203 7.473212 6.522847 6.964712 3.1802275 2.223553 3.608103 #> [9,] 6.822510 5.916967 5.559288 5.928278 2.1638781 1.529925 4.733718 #> [10,] 7.467960 6.556054 5.234875 5.667755 5.0065202 2.121485 3.979983 #> [,16] [,17] [,18] [,19] [,20] [,21] #> [1,] -0.1772826 1.4946823 1.07618626 0.5701545 -0.79956605 0.8410635 #> [2,] 1.8225973 2.4251136 1.35403261 1.5643747 -0.19840579 0.4945068 #> [3,] 2.4672549 -0.3663400 1.21427588 -0.8536887 0.18719848 1.3170112 #> [4,] 2.6203378 0.5224968 0.78408026 1.6771057 1.32744970 0.7337417 #> [5,] 0.4195733 -1.4093856 1.65943262 1.5170427 0.02742336 -0.2350584 #> [6,] 1.3925381 0.2880446 0.52271382 0.6178868 0.56556894 1.3782432 #> [7,] 1.1363785 2.0036613 0.07354404 1.1129297 0.95959186 0.9374834 #> [8,] 0.6957562 1.8322343 2.42254184 0.3288058 1.27139695 0.3331472 #> [9,] 0.1789984 1.2700344 1.41729933 0.8824420 0.78596437 1.4537650 #> [10,] 1.0334706 -0.0352803 3.65460642 -0.5870528 -1.25933144 2.1941271 #> [,22] [,23] [,24] #> [1,] 1.64332715 0.8393622 1.1101611 #> [2,] 0.40815097 -0.5670276 1.1362685 #> [3,] -0.34331827 1.6551181 -0.6208794 #> [4,] -1.13885533 0.9022009 2.3675480 #> [5,] -0.03425121 0.9520896 0.3430201 #> [6,] 0.18861683 0.2546174 1.2096681 #> [7,] 0.95328850 0.4604991 -1.0384838 #> [8,] 0.01987101 -0.6476905 0.2563355 #> [9,] 1.81413736 -0.3708223 -0.9416715 #> [10,] -0.18689642 -0.3632936 1.1226729 #>## Simulating binomial dose-response data ## Model fit to simulate from deguelin.m1 <- drm(r/n~dose, weights=n, data=deguelin, fct=LL.2(), type="binomial") ## 10 random dose-response curves sim10b <- rdrm(10, LL.2(), coef(deguelin.m1), deguelin$dose, yerror="rbinom", ypar=deguelin$n) sim10b#> $x #> [,1] [,2] [,3] [,4] [,5] [,6] #> [1,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [2,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [3,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [4,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [5,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [6,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [7,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [8,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [9,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> [10,] 5.128614 10 20.41738 30.19952 40.73803 50.11872 #> #> $w #> [,1] [,2] [,3] [,4] [,5] [,6] #> [1,] 49 48 48 49 50 48 #> [2,] 49 48 48 49 50 48 #> [3,] 49 48 48 49 50 48 #> [4,] 49 48 48 49 50 48 #> [5,] 49 48 48 49 50 48 #> [6,] 49 48 48 49 50 48 #> [7,] 49 48 48 49 50 48 #> [8,] 49 48 48 49 50 48 #> [9,] 49 48 48 49 50 48 #> [10,] 49 48 48 49 50 48 #> #> $y #> [,1] [,2] [,3] [,4] [,5] [,6] #> [1,] 7 17 35 44 45 46 #> [2,] 18 30 41 45 47 46 #> [3,] 14 26 37 41 48 48 #> [4,] 9 27 37 41 46 45 #> [5,] 9 16 41 46 48 47 #> [6,] 8 18 39 49 45 47 #> [7,] 12 21 32 42 49 47 #> [8,] 17 26 38 47 48 45 #> [9,] 10 27 34 42 47 47 #> [10,] 12 22 37 45 46 47 #>