comped.Rd
Comparison of a pair of effective dose values from independent experiments where only the estimates and their standard errors are reported.
comped(est, se, log = TRUE, interval = TRUE, operator = c("-", "/"), level = 0.95, df = NULL)
est | a numeric vector of length 2 containing the two estimated ED values |
---|---|
se | a numeric vector of length 2 containing the two standard errors |
log | logical indicating whether or not estimates and standard errors are on log scale |
interval | logical indicating whether or not a confidence interval should be returned |
operator | character string taking one of the two values "-" (default) or "/" corresponding to a comparison based on the difference or the ratio. |
level | numeric value giving the confidence level |
df | numeric value specifying the degrees of freedom for the percentile used in the confidence interval (optional) |
The choice "/" for the argument operator
and FALSE for log
will result in estimation of a socalled
relative potency (sometimes also called a selectivity index).
The combination TRUE for log
and "/" for operator
only influences the confidence interval,
that is no ratio is calculated based on logarithm-transformed effective dose values.
By default confidence interval relies on percentiles in the normal distribution.
In case the entire dataset is available the functions drm
and (subsequently) EDcomp
should be used instead.
A matrix with the estimated difference or ratio and the associated standard error and the resulting confidence interval (unless not requested).
Wheeler, M. W. and Park, R. M. and Bailer, A. J. (2006) Comparing median lethal concentration values using confidence interval overlap or ratio tests, Environmental Toxicology and Chemistry, 25, 1441--1441.
The development of the function comped
is a side effect of the project on statistical analysis of
toxicity data funded by the Danish EPA ("Statistisk analyse og biologisk tolkning af toksicitetsdata",
MST j.nr. 669-00079).
The function ED.drc
calculates arbitrary effective dose values based on a model fit. The function
EDcomp
calculates relative potencies based on arbitrary effective dose values.
## Fitting the model S.alba.m1 <- boxcox(drm(DryMatter~Dose, Herbicide, data=S.alba, fct = LL.4(), pmodels=data.frame(Herbicide,1,1,Herbicide)), method = "anova")#> #> Estimated effective doses #> #> Estimate Std. Error #> e:Bentazone:10 18.0321 2.5790 #> e:Bentazone:90 44.7170 2.6095 #> e:Glyphosate:10 21.1807 4.1023 #> e:Glyphosate:90 203.0085 24.8259## Making comparisons of ED50 in two ways and for both differences and ratios compParm(S.alba.m1, "e", "/")#> #> Comparison of parameter 'e' #> #> Estimate Std. Error t-value p-value #> Bentazone/Glyphosate 0.433044 0.041805 -13.562 < 2.2e-16 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1comped(c(28.396147, 65.573335), c(1.874598, 5.618945), log=FALSE, operator = "/")#> #> Estimated ratio of effective doses #> #> Estimate Std. Error Lower Upper #> [1,] 0.433044 0.046842 0.341235 0.5249#> #> Comparison of parameter 'e' #> #> Estimate Std. Error t-value p-value #> Bentazone-Glyphosate -37.1772 5.5365 -6.7149 6.681e-09 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1comped(c(28.396147, 65.573335), c(1.874598, 5.618945), log=FALSE, operator = "-")#> #> Estimated difference of effective doses #> #> Estimate Std. Error Lower Upper #> [1,] -37.1772 5.9234 -48.7868 -25.567# similar result ## Making comparisons of ED10 and ED90 comped(c(21.173, 44.718), c(11.87, 8.42), log=FALSE, operator = "/")#> #> Estimated ratio of effective doses #> #> Estimate Std. Error Lower Upper #> [1,] 0.473478 0.280013 -0.075336 1.0223comped(c(21.173, 44.718), c(11.87, 8.42), log=FALSE, operator = "/", interval = FALSE)#> #> Estimated ratio of effective doses #> #> Estimate Std. Error #> [1,] 0.47348 0.28comped(c(21.173, 44.718), c(11.87, 8.42), log=FALSE, operator = "-")#> #> Estimated difference of effective doses #> #> Estimate Std. Error Lower Upper #> [1,] -23.545 14.553 -52.069 4.9786