simDR.Rd
Simulating ED values for a given model and given dose values.
simDR(mpar, sigma, fct, noSim = 1000, conc, edVec = c(10, 50), seedVal = 20070723)
mpar | numeric vector of model parameters |
---|---|
sigma | numeric specifying the residual standard deviation |
fct | list supplying the chosen mean function |
conc | numeric vector of concentration/dose values |
edVec | numeric vector of ED values to estimate in each simulation |
noSim | numeric giving the number of simulations |
seedVal | numeric giving the seed used to initiate the random number generator |
The arguments mpar
and sigma
are typically obtained from a previous model fit.
Only dose-response models assuming normally distributed errors can be used.
A list of matrices with as many components as there are chosen ED values. The entries in the matrices are empirical standard deviations of the estimated ED values. Row-wise from top to bottom more and more concentration/dose values are included in the simulations; top row starting with 5 concentrations. The number of replicates increases column by column from left to right.
The list is returned invisbly as the matrices also are displayed.
ryegrass.m1 <- drm(ryegrass, fct=LL.4()) simDR(coef(ryegrass.m1), sqrt(summary(ryegrass.m1)$resVar), LL.4(), 2, c(1.88, 3.75, 7.50, 0.94, 15, 0.47, 30, 0.23, 60), seedVal = 200710291)#> Concentrations used: 1.88 3.75 7.5 0.94 15 0.47 30 0.23 60 #> #> ED value considered: 10 #> Conc. no.\Replicates: #> 1 2 3 4 5 6 #> 5 0.21663344 0.81050743 0.03720474 0.31941962 0.27602174 1.06748994 #> 6 0.94123238 0.09153931 0.05169959 0.42236519 0.05903568 0.65652040 #> 7 0.37505197 0.89749084 1.10562748 0.46717540 0.09427895 0.09941082 #> 8 0.29322754 0.35947683 0.36292195 0.12434167 0.25382652 0.44720085 #> 9 0.05051407 0.81151253 0.36009230 0.09176809 0.05572999 0.07993389 #> #> #> ED value considered: 50 #> Conc. no.\Replicates: #> 1 2 3 4 5 6 #> 5 0.41931241 2.5598687 0.1999825 0.1641816 0.0184324 1.2226656 #> 6 0.59150811 0.1644054 0.1555681 0.3922277 0.1010897 0.6564398 #> 7 0.79504087 0.5011138 0.4209378 0.3844431 0.3784710 0.4346236 #> 8 0.01548633 0.4687979 0.4580110 0.6642111 0.2163613 0.1593073 #> 9 1.82422377 0.4866429 0.5804128 0.1243123 0.2344158 0.1205998 #> #>