logistic.Rd
The general asymmetric five-parameter logistic model for describing dose-response relationships.
logistic(fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"), method = c("1", "2", "3", "4"), ssfct = NULL, fctName, fctText) L.3(fixed = c(NA, NA, NA), names = c("b", "d", "e"), ...) L.4(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"), ...) L.5(fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"), ...)
fixed | numeric vector. Specifies which parameters are fixed and at what value they are fixed. NAs for parameter that are not fixed. |
---|---|
names | a vector of character strings giving the names of the parameters (should not contain ":"). The order of the parameters is: b, c, d, e, f (see under 'Details'). |
method | character string indicating the self starter function to use. |
ssfct | a self starter function to be used. |
fctName | optional character string used internally by convenience functions. |
fctText | optional character string used internally by convenience functions. |
... | Additional arguments (see |
The default arguments yields the five-parameter logistic mean function given by the expression
$$ f(x) = c + \frac{d-c}{(1+\exp(b(x - e)))^f}$$
The model is different from the log-logistic models llogistic
and llogistic2
where the term $$log(x)$$ is used instead of $$x$$.
The model is sometimes referred to as the Boltzmann model.
The value returned is a list containing the nonlinear function, the self starter function and the parameter names.
## Fitting the four-parameter logistic model ryegrass.m1 <- drm(rootl ~ conc, data = ryegrass, fct = L.4()) summary(ryegrass.m1)#> #> Model fitted: Logistic (ED50 as parameter) (4 parms) #> #> Parameter estimates: #> #> Estimate Std. Error t-value p-value #> b:(Intercept) 1.10548 0.22737 4.8621 9.444e-05 *** #> c:(Intercept) 0.64966 0.18978 3.4231 0.002694 ** #> d:(Intercept) 8.07122 0.35994 22.4239 1.268e-15 *** #> e:(Intercept) 3.06924 0.19638 15.6290 1.126e-12 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Residual standard error: #> #> 0.5527393 (20 degrees of freedom)## Fitting an asymmetric logistic model ## requires installing the package 'NISTnls' # Ratkowsky3.m1 <- drm(y~x, data = Ratkowsky3, # fct = L.5(fixed = c(NA, 0, NA, NA, NA))) # plot(Ratkowsky3.m1) # summary(Ratkowsky3.m1) ## okay agreement with NIST values ## for the two parameters that are the same