ctb.Rd
Neurotoxicity test using the CellTiter-Blue Cell Viability Assay on SH-SY5Y cells for increasing concentrations of acrylamide.
data(ctb)
A data frame with 647 observations on the following 5 variables.
well
well ID of a 96 well plate
conc
12 concentrations of acrylamide, ranging from 0-500mM
fluorescence
measured fluorescence after adding the resazurin reagent into the wells
day
integer denoting 3 different days
plate
factor with 7 levels representing the plate ID
Frimat, JP, Sisnaiske, J, Subbiah, S, Menne, H, Godoy, P, Lampen, P, Leist, M, Franzke, J, Hengstler, JG, van Thriel, C, West, J. The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab Chip 2010; 10:701-709.
# NOT RUN { data(ctb) ctb$day <- as.factor(ctb$day) ctb$dayplate <- as.factor(with(ctb, paste(day, plate, sep="/"))) ggplot(ctb, aes(x=log(conc), y=fluorescence, colour=day, group=day:plate)) + geom_point() # starting values for fixed effects fix <- coefficients(drm(fluorescence ~ conc, fct=LL.4(), data=ctb)) # starting values for random day effects rday <- drm(fluorescence ~ conc, curveid=day, fct=LL.4(), data=ctb) cmatday <- matrix(coefficients(rday), ncol=4) mday <- apply(cmatday, 2, mean) names(mday) <- letters[2:5] rmatday <- t(apply(cmatday, 1, function(x) x-mday)) rownames(rmatday) <- levels(ctb$day) colnames(rmatday) <- letters[2:5] start <- list(fixed=fix, random=list(day=rmatday[,3, drop=FALSE])) ## set of nonlinear mixed models ctb.LL4.mixed <- medrm(fluorescence ~ conc, fct=LL.4(), data=ctb, random=d ~ 1 | day/plate, start=start) ctb.LN4.mixed <- medrm(fluorescence ~ conc, fct=LN.4(), data=ctb, random=d ~ 1 | day/plate, start=start) ctb.W14.mixed <- medrm(fluorescence ~ conc, fct=W1.4(), data=ctb, random=d ~ 1 | day/plate, start=start) ctb.W24.mixed <- medrm(fluorescence ~ conc, fct=W2.4(), data=ctb, random=d ~ 1 | day/plate, start=start) ctb.FPL4b.mixed <- medrm(fluorescence ~ conc, fct=FPL.4(-1, 1), data=ctb, random=d ~ 1 | day/plate, start=start) ctb.FPL4c.mixed <- medrm(fluorescence ~ conc, fct=FPL.4(-1, 2), data=ctb, random=d ~ 1 | day/plate, start=start) ctb.FPL4d.mixed <- medrm(fluorescence ~ conc, fct=FPL.4(-0.5, 3), data=ctb, random=d ~ 1 | day/plate, start=start) ## information criteria AIC(ctb.LL4.mixed, ctb.LN4.mixed, ctb.W14.mixed, ctb.W24.mixed, ctb.FPL4b.mixed, ctb.FPL4c.mixed, ctb.FPL4d.mixed) # }